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Objective

Large lumbar load transmissions to the seated occupants
exposed to crash/impact events

Landmine blast of armored vehiclesHelicopter hard landing

To develop an adaptive occupant protection seat suspension
for minimizing transmitted lumbar loads during shock events
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– Constant Stroking Load Control

– Terminal Trajectory Control

ConclusionsConclusions



Magnetorheological Fluid

Magnetic

Particles

Shear Stress ττττ > 0Shear Stress ττττ > ττττy

N

S

Chain 

Formation

• Magnetic field induces change in viscosity of MR fluid

• Formation of chains of magnetic particles due to magnetic induction

• Yield behavior results at a shear stress leading to breaking of chains
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MREA Configuration

Double-ended MREA with multi-stage electromagnetic coils.

MREA Stroking Load: Yield force (controllable) & Viscous force (passive)



MREA Analysis

Pressure Drop Regions

• Entrance effect from region 1-2.

• Sudden expansion from region 2-3, 4-5 and 6-7.

• Sudden contraction from region 3-4, 5-6, 7-8.

• Exit effect from region 8-9.

• Viscous Darcy friction losses in coil gap 3, 5 and 7.

• Viscous Darcy friction losses in MR valve 2, 4, 6 and 8.

• MR effect pressure losses in MR valve 2, 4, 6 and 8.

Pressure Drop Regions



Bingham Plastic Model

MREA Yield force

The pressure drop due to yield stress and the corresponding force is

Geometric fluid circuit for a single-stage electromagnetic coil



Bingham Plastic Model

Total Passive (Off-state) Force

MREA Stroking Load: Yield force (controllable) + viscous force (passive)MREA Stroking Load: Yield force (controllable) + viscous force (passive)

BUT HOW TO SELECT MREA DIMENSIONS ???



Controllability Envelope Optimization

Schematic of controllability 
envelope of MREA

Quadratic variation  α Vp
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Envelope

DR approaches 1 at higher velocities

because of increased off-state forces
Re (Reynold’s Number)Re (Reynold’s Number)

(Mao, Choi, & Wereley, 2005)



Optimized MREA

• Increased electromagnetic coils increased MR yield force

• Passive viscous forces remained the same



MREA Design: Practical Issues

– A piston with 5 coils has a length of 8 inches

– MREA stroke is 16 inches

– The hydraulic cylinder of MREA has approximately 24 inches length

– Imperfect longitudinal loads might cause impact of piston with cylinder

A piston guide was
proposed to allow pure
longitudinal motion

How does that affect
the MREA forces??



CFD Analysis

• A 2d CFD analysis was carried out using FLUENT software

• Refined grid near the walls for boundary layer effects

• BC were defined

• The pressure drops were estimated due to fluid motion

Vel
Wall

Vel

inlet
Axis

Wall

OutflowWall



CFD Analysis



MREA Characterization

MTS cyclic testing up to 5 ft/s 

(0.5-6 Hz; 0-5.5 A) MTS cyclic testing setup



Drop Tests

Drop tests 

up to 15 ft/s 
(Field off only, 0A)

Drop stand
Drop test setup



Results

• Tests conducted up to 
15ft/s

• Experiments and CFD 
predictions match well

• Bingham Plastic Model 
under predicted the 
viscous forcesBPM without Piston Guide

CFD with Piston Guide

viscous forces

• Experimental yield force 
was higher than BPM

• BPM does not capture 
the dynamic yield stress 
of MR fluid precisely

Piston Velocity (m/s)

BPM without Piston Guide
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Existing Constant Stroking Load Concepts

• Inversion tubes

• Wire bending

• Cutting and Slitting

Desjardins, S.P., “The Evolution of Energy Absorption Systems for Crashworthy Helicopter Seats,” 59th AHS

Annual Forum, Phoenix, AZ, 6-8 May, 2003



Variability in CSL Approach

• Adjusting roller location in wire bender

Desjardins, S.P., “The Evolution of Energy Absorption Systems for Crashworthy Helicopter Seats,” 59th AHS

Annual Forum, Phoenix, AZ, 6-8 May, 2003



Constant Stroking Load Control

• Stroking the seat based on dynamic limit load of energy absorber.

• Dynamic limit load is the maximum permissible stroking load to which
an occupant can be subjected

• The limit load was found to be: 11.70 kN (14.5Mg); 8.07 kN (10Mg)

• No control authority over passive viscous force

Desjardins, S.P., Zimmerman, R.E., Bolukbasi, A.O., and Merritt, N.A., “Aircraft Crash Survival Design Guide,”
Aviation Applied Technology Directorate, USAAVSCOM TR 89-D-22D, Fort Eustis, VA, 1989.



Velocity Feedback



Velocity Feedback

Large oscillations

Test condition
Mass: 380 lb (172 kg)  Height: 35 in (88.9 cm)

Stroke limit: 7 in

Stroke utilized: 6.1 in

Peak velocity: 2.7 m/s



Force Feedback



Force Feedback

Less oscillations

Test condition
Mass: 380 lb (172 kg)  Height: 35 in (88.9 cm) ; 60 in (152.4 cm)

Stroke Limit: 7 in

Stroke: 2.2 and 4.1 in

Peak velocity: 2.3 and 3.4 m/s

Higher current drop for 60in



Terminal Trajectory Control

• Maximize shock attenuation by utilizing the entire EA stroke

Key goals:

� Dissipate kinetic energy over the entire stroke

� Avoid potentially injurious end-stop impact i.e. soft landing

Terminal Conditions:Terminal Conditions:

• Simple approach: a constant MREA yield force could satisfy the
terminal conditions



Current Estimation

• Modeling the shock as an initial velocity impact

Rigid Payload

H is the drop height; fs due to friction in system

Energy dissipated by honeycombEnergy dissipated by honeycomb

P is crushable stress of honeycomb, h is crushed height.

Energy dissipated by MREA



Current Estimation

• Current estimated using Fixed Point Iteration scheme

• Current estimations: 1.75 A for 35 in; 2.65 A for 60 in



Terminal Trajectory Control

Force increased with 
shock intensity

Test condition
Mass: 380 lb (172 kg)  Height: 35 in (88.9 cm) ; 60 in (152.4 cm)

Stroke Limit: 7 in

Higher constant current for 60in

Stroke: 6.2 and 6.1 in

Peak velocity: 3.0 and 3.5 m/s
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Conclusions

• MREA was designed for a large dynamic range or control authority

• MREA performance was evaluated using MTS cycling and drop tests for 
current inputs of 0-5.5A and speeds up to 15ft/s or 4.5m/s

• Constant stroking load and terminal trajectory control were analyzed

• Velocity feedback based CSLC could not maintain constant load due to 
strong dependence on velocitystrong dependence on velocity

• Force feedback based CLSC was relatively better

• TTC had no issue of time delay between current and magnetic field buildup

• CLSC – (Existing wire benders, crushable tubes)

Same stroking load Different stroke utilization Poor Adaptation

• TTC performs superior

Adaptive Stroking load Same stroke utilization Good Adaptation
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